On the Global Solution of Linear Programs with Linear Complementarity Constraints

نویسندگان

  • Jing Hu
  • John E. Mitchell
  • Jong-Shi Pang
  • Kristin P. Bennett
  • Gautam Kunapuli
چکیده

This paper presents a parameter-free integer-programming based algorithm for the global resolution of a linear program with linear complementarity constraints (LPEC). The cornerstone of the algorithm is a minimax integer program formulation that characterizes and provides certificates for the three outcomes—infeasibility, unboundedness, or solvability—of an LPEC. An extreme point/ray generation scheme in the spirit of Benders decomposition is developed, from which valid inequalities in the form of satisfiability constraints are obtained. The feasibility problem of these inequalities and the carefully guided linear programming relaxations of the LPEC are the workhorse of the algorithm, which also employs a specialized procedure for the sparsification of the satifiability cuts. We establish the finite termination of the algorithm and report computational results using the algorithm for solving randomly generated LPECs of reasonable sizes. The results establish that the algorithm can handle infeasible, unbounded, and solvable LPECs effectively.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Global Solution to Parametric Complementarity Constrained Programs and Applications in Optimal Parameter Selection By

This thesis contains five chapters. The notations, terminologies, definitions and numbering of equations, theorems and algorithms are independent in each chapter. Chapter 1 provides a fundamental introduction and contextual discussions to provide a unified theme for the subsequent chapters into a complete work. Chapters 2, 3 and 4 are arranged for ease of reading and understanding separately. F...

متن کامل

N.v. Thoai, Y. Yamamoto and A. Yoshise Global Optimization Method for Solving Mathematical Programs with Linear Complementarity Constraints

We propose a method for finding a global optimal solution of programs with linear complementarity constraints. The program arises for instance from the bilevel programs. The main idea of the method is to generate a sequence of points either ending at a global optimal solution within a finite number of iterations or converging to a global optimal solution. The construction of such a sequence is ...

متن کامل

Global Optimization Method for Solving Mathematical Programs with Linear Complementarity Constraints

We propose a method for finding a global optimal solution of programs with linear complementarity constraints. The program arises for instance from the bilevel programs. The main idea of the method is to generate a sequence of points either ending at a global optimal solution within a finite number of iterations or converging to a global optimal solution. The construction of such a sequence is ...

متن کامل

A full Nesterov-Todd step infeasible interior-point algorithm for symmetric cone linear complementarity problem

‎A full Nesterov-Todd (NT) step infeasible interior-point algorithm‎ ‎is proposed for solving monotone linear complementarity problems‎ ‎over symmetric cones by using Euclidean Jordan algebra‎. ‎Two types of‎ ‎full NT-steps are used‎, ‎feasibility steps and centering steps‎. ‎The‎ ‎algorithm starts from strictly feasible iterates of a perturbed‎ ‎problem‎, ‎and, using the central path and feasi...

متن کامل

Obtaining Tighter Relaxations of Mathematical Programs with Complementarity Constraints

The class of mathematical programs with complementarity constraints (MPCCs) constitutes a powerful modeling paradigm. In an effort to find a global optimum, it is often useful to examine the relaxation obtained by omitting the complementarity constraints. We discuss various methods to tighten the relaxation by exploiting complementarity, with the aim of constructing better approximations to the...

متن کامل

Solving Linear Programs with Complementarity Constraints using Branch-and-Cut

A linear program with linear complementarity constraints (LPCC) requires the minimization of a linear objective over a set of linear constraints together with additional linear complementarity constraints. This class has emerged as a modeling paradigm for a broad collection of problems, including bilevel programs, Stackelberg games, inverse quadratic programs, and problems involving equilibrium...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM Journal on Optimization

دوره 19  شماره 

صفحات  -

تاریخ انتشار 2008